
Discontinuous Shear Modulus Determines the Glass Transition Temperature

Christian L. Klix, Georg Maret, and Peter Keim*

University of Konstanz, D-78457 Konstanz, Germany
(Received 6 July 2015; revised manuscript received 11 September 2015; published 25 November 2015)

A solid—amorphous or crystalline—is defined by a finite shear modulus while a fluid lacks such.
We thus experimentally investigate the elastic properties of a colloidal glass former near the glass transition:
Spectroscopy of vibrational excitations yields the dispersion relations of longitudinal and transverse
phonons in the glassy state. From the long-wavelength limit of the dispersion relation, we extract the bulk
and the shear modulus. As expected, the latter disappear in a fluid and we measure a clearly resolved
discontinuous behavior of the elastic moduli at the glass transition. This not only determines the transition
temperature TG of the system but also directly addresses recent discussions about elasticity during
vitrification. We show that low-frequency excitations in our system are plane waves such that continuum
elasticity theory can be used to describe the macroscopic behavior.
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I. INTRODUCTION

In general, there are several ways to define glassy
systems [1,2]. For instance, a characteristic change in
the thermodynamic properties volume and enthalpy upon
cooling a fluid may be used to define the glass transition
temperature TG. Another property often investigated for
molecular or atomic glasses is the viscosity η. Taking into
account the rapid slowing-down of dynamics, the glassy
state is reached when the viscosity exceeds 1012 Pa s upon
crossing the freezing temperature. However, all of these
definitions are difficult to apply to soft-matter systems.
In studies on the mesoscopic or microscopic scale, access
to the macroscopic property η often is difficult, if not
impossible. Second, these systems are “softer” up to a
factor of 10−10 (2D) or 10−15 (3D), which rules out the idea
of an universal, viscosity-dependent categorization. Thus,
other ways have been suggested to pin down TG [2].
A manifestation of solidity is the emergence of rigidity,
expressed by the shear modulus μ becoming finite.
Microscopically, prerequisites for solidity are long-ranged
dynamical correlations. While it is easy to understand how
such long-range correlations emerge in a crystal (based on
the concept of long-ranged periodic order), solidity is much
less easy to grasp on an amorphous, disordered back-
ground. As the shear modulus is zero in fluids, we expect a
significant change of μ at the onset of vitrification [3,4].
Although μ is a macroscopic property, it is measurable
locally via the equipartition theorem, which makes this

concept well suited for soft-matter systems [5,6]. From an
experimental point of view, this approach is advantageous
because it relies on measuring the change of a quantity from
zero to a finite value. On the other hand, the usual approach
of measuring the divergence of dynamical quantities like
the viscosity is much harder to realize experimentally
because it requires access to a much larger parameter space.
Elasticity of complex fluids and their viscoelastic behavior

have been tackled mostly by rheological measurements so
far [7]. In general, these methods allow the study of
frequency-dependent storage G0ðωÞ and loss G00ðωÞ moduli.
The former describes the elastic contribution, while the latter
covers dissipative processes upon shear. Thus, a nonvanish-
ing G0ðωÞ > G00ðωÞ in the limit ω → 0 indicates a solid.
These quantities have been investigated extensively by
experiment as well as theory [8,9], and from the data, a
clear distinction between solid and fluid states might be
drawn. This is also true for flow curves, which might be
not only acquired by conventional rheometers but also by
microfluidic rheology [10]. Here, we address solely the
elasticity by internal fluctuations without external driving.
While it has been shown recently that the zero-frequency

shear modulus limω→0G0ðωÞ ¼ μ is a good quantity to
observe the glass transition [11], there has been an ongoing
debate on the behavior of μ when an amorphous solid forms.
Replica-theory approaches [12] predict a continuous growth
from zero upon cooling. This agrees with the view from
granular systems, where theory predicts critical fluctuations
close to the jamming transition of these athermal systems
that also lead to an algebraic growth of μ from zero [13]. On
the other hand, another recent replica-theory calculation
reveals a discontinuous jump at the glass transition [14–16].
This complies with mode-coupling-theory predictions [17]
where μ is connected to a nonergodicity parameter appearing
in a stress autocorrelation function. A discussion about the
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discontinuous elasticity in the context of random first-order
transition is given in Ref. [18]. In addition, simulations of
hard disks also showed a discontinuous onset of the shear
modulus [11] by accessing the system with the equipartition
theorem. Similar results from novel four-point correlation
calculations back this up further [19].
Here, we evaluate microscopy data from a two-

dimensional colloidal model system with soft interactions
in equilibrium. This gives us access to information on
the single-particle scale as opposed to atomic or molecular
systems, where only ensemble data may be studied. By
determining the displacement field and subsequent analysis
in Fourier space, the dispersion relations of acousticlike
excitations are obtained and provide insight into the
macroscopic elastic properties of the system. As the system
is cooled, we are able to confirm the discontinuous nature
of the shear modulus at the glass transition.

II. METHODS

Video microscopy provides access to the full phase-
space information. We record the trajectories of about 2300
colloidal particles confined to two dimensions at a flat
water-air interface. The species A (diameter σ ¼ 4.5 μm)
and B (σ ¼ 2.8 μm) have a relative concentration of
ξ ¼ NB=ðNA þ NBÞ ≈ 50% where NA and NB are the
number of particles of both species in the field of view.
This prevents the system from crystallization.
The superparamagnetic nature of the particles lets us

control the particle interactions in situ by an external
magnetic field H. This is expressed by the dimensionless
system parameter

Γ ¼ μ0
4π

H2ðπnÞ3=2
kBT

½ξχB þ ð1 − ξÞχA�2; ð1Þ

which effectively acts as an inverse temperature. Here, n
denotes the area density and is computed via a Voronoi
tessellation. χA;B represent the susceptibilities of species A
and B, respectively. After equilibration at low Γ, the system
is cooled down stepwise. For different states up to
3.8 × 105, snapshots are analyzed. With a frame rate of
approximately 2 s−1, sampling times up to some 105

seconds are achieved. This is sufficiently long to probe
dynamics even in the relaxation-time regime τα for highest
system parameters Γ. Additional details of the setup are
described elsewhere [20,21].
We follow the well-established data evaluation scheme

described in Ref. [22]. The harmonic part of the system’s
potential energy is bilinear in the displacements ~u times the
“spring constant” given by [23]

U ¼ 1

2

X

~q;α;β

u�αð~qÞDαβð~qÞuβð~qÞ: ð2Þ

For the monolayer, the dynamical matrix Dα;βð~qÞ is a 2 × 2
matrix and describes the elastic coupling between particles.
It is given by a sum of the second derivatives of the
interparticle potential, and α, β ∈ 1, 2 index the two spatial
dimensions. Elasticity naturally originates from the spring
constants of the system. These are the eigenvalues δs of the
dynamical matrix we are interested in.
The displacement ~uiðtÞ ¼ h~rii − ~riðtÞ of particle i is

taken relative to its equilibrium position, and its Fourier
component is given by ~uð~qÞ ¼ P

N
j¼1 e

i~q·h~rji~ujðtÞ. We cal-
culate those positions to be the center of mass of the
trajectory h~rii ¼ 1=M

P
M
t ~riðtÞ, where the average is taken

over a time interval Δt significantly longer than any short-
time relaxation process. In the equation, M corresponds to
the number of snapshots during the time interval Δt, and in
an amorphous solid, those time-averaged positions con-
verge to the quasiequilibrium positions. The expression for
h~rii holds as long as Δt is smaller than the relaxation time
τα and particles are confined in their “cage.” τα is extracted
from mean-squared displacement (MSD) measurements for
high Γ.
In an amorphous system, we cannot calculate the dynami-

cal matrix Dα;βð~qÞ a priori, but using the equipartition
theorem, we can measure its eigenvalues δs. The equiparti-
tion theorem reads hUi ¼ NkBT, where N is the number of
particles, each with two translational degrees of freedom.
With Eq. (2), it follows that

kBT ¼ δsð~qÞhjusð~qÞj2i: ð3Þ
The subscript s denotes polarizations ∥, ⊥ and depends on
the relative orientation of ~u and ~q. For ~q∥~u and ~q⊥~u, we
study longitudinal and transverse behavior, respectively.
δsð~qÞ is termed a “dispersion relation,” but we keep in mind
that in our system, oscillatory motion is overdamped due
to the surrounding solvent. By applying this method, we
implicitly assume the investigated modes to be plane waves.
This holds in the long-wavelength limit corresponding to
classical continuum elasticity theory [24]. There, the 2D
system is considered to be a homogeneous, structureless
solid. Theoretical background on this approach can be
found in Ref. [11].
From the dispersion relations, the elastic constants can

be derived in the long-wavelength limit [5]. In a two-
dimensional isotropic solid, the elasticity tensor Cμνστ

possesses only two independent elements. These two
elements can be expressed via the Lamé coefficients μ
and λ of continuum elasticity theory. We extract the Lamé
coefficients from the dispersion relation as

kBT
a20ð2μþ λÞ ¼ lim

~q→0

�
1

q2
hju∥ð~qÞj2i

�
; ð4Þ

kBT
a20μ

¼ lim
~q→0

�
1

q2
hju⊥ð~qÞj2i

�
: ð5Þ
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Here, a0 is the mean interparticle distance, defining the area
density as n ¼ 1=a20. In two dimensions, μ gives the shear
modulus and μþ λ ¼ B the bulk modulus. As we extract
the elastic constants for ~q → 0, we are only accounting for
long-wavelength modes in elastic continuum theory, which
justifies our approach even in disordered materials.
Recent work on vibrational properties of colloidal

glasses relied on the diagonalization of the covariance
matrix of the displacement field [25–27]. From the
spectrum of eigenvalues, this two-dimensional principal
component approach derives the density of vibrational
states. In all cases [hard spheres and soft thermosensitive
Poly(N-isopropylacrylamide) particles], an anomalous
low-frequency behavior was found, which was connected
to the boson peak known from scattering experiments in
molecular or polymeric glasses [28,29]. This excess of
modes was attributed to the nonisotropy of disordered
systems at short to intermediate length scales. In atomic and
molecular glasses, recent progress showed that long-
wavelength modes undergo a crossover from propagation
to localization due to diffraction upon decreasing the
wavelength [30–34]. By analyzing the eigenvector struc-
ture of the covariance matrix, the spatial features of the
corresponding modes could be visualized in the colloidal
case [25–27]. It was concluded that the low-frequency
spectrum consisted mainly of a localized “swirling” type
of modes. Since this does not go along with our approach
of plane waves in a continuous medium, we study the
structure of modes via principal component analysis as well
at the end of the paper. From the particle displacements
~uðtÞ, we compute the covariance matrix

Cij ¼ huiðtÞujðtÞit; ð6Þ
where i and j correspond to all components of all particle
displacements. By diagonalization, we obtain the spectrum
of eigenvalues c⋆. Following Refs. [25–27], we use the
inverse as frequencies of the modes in our systems,
providing a mapping ω2 ¼ 1=c⋆. The corresponding eigen-
vectors reveal the structure of those modes we are interested
in. In the calculations, we follow the procedures described
in Ref. [35]. Because principal component analysis (PCA)
requires large statistics, we use 1.24 × 105 frames for
constructing the covariance matrix. At this number, the
results have statistically converged.

III. RESULTS

To start off, we present the measured MSD hΔr2ðτÞi ¼
hð1=NÞPN

i ½~riðtþ τÞ − ~rðtÞ�2i of the particles in Fig. 1 for
different system temperatures. Here, N presents the total
number of particles that are located at positions ~ri at time t.
It clearly shows the expected slow-down of dynamics. At
high temperatures, the data show a mere kink that slowly
develops into a plateau for intermediate lag times τ.
For longer times τα, the dynamics exhibits (sub)diffusive
behavior corresponding to alpha relaxation processes.

This becomes clear by comparing to the solid black line
with slope 1, marking free diffusion. It is noteworthy that
from this dynamic data alone, the exact temperature of a
transition from the fluid state to a solid (amorphous) state
can hardly be identified.
Therefore, we focus on spectroscopy of acoustic excita-

tions. Figure 2 shows the measured normalized “dispersion
relations” for different interaction parameters analyzed from
trajectories of big particles. Filled and empty symbols
represent spring constants for longitudinal and transverse
waves, respectively. The curves are averaged over different
directions of ~q, taking advantage of the isotropy of the
system. The error bars contain contributions from the finite
optical resolution of the microscopy technique (assumed to
be approximately 100 nm), which affects the amplitudes of
modes in Fourier space. As expected, they show an initial
quadratic growth (in agreement with Debye behavior) and
exhibit a maximum near q ¼ π where the system is stiffest
and propagation of waves fades out.
Usually, the growing amplitude of the curves with

increasing Γ reflects the stiffening of the system upon
cooling. In a harmonic crystal, the “dispersion relation”
scales directly with the coupling parameter since the spring
constants grow quadratically with H2 and thus go linear
with Γ [22]. Accordingly, the curves for different temper-
atures should collapse onto one single master curve if
divided by the interaction strength. Interestingly, we do
not find this scaling in the amorphous solid. Besides the
magnetic field, Γ only depends on intrinsically fixed
parameters as laboratory temperature, magnetic suscep-
tibility, or area density. Since the particle-particle inter-
actions (and therefore the “spring constants”) depend
crucially on the respective distance, a subtle change in
structure might explain this behavior. With increasing
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FIG. 1. MSD for both species of particles at different temper-
atures. The kink at high temperatures slowly develops into a
plateau. However, it is impossible to distinguish unambiguously
between solid and fluid states from this dynamical data. The solid
black line corresponds to free diffusion and the vertical dashed
line to the sampling time Δt used in the following analysis to
determine the elasticity.
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interaction parameter, the particles try to maximize their
distances at constant Voronoi area in order to minimize
energy.
Because in the disordered state the equilibrium particle

positions are not fixed for all times, the structure of the
system might adapt to the increased pressure without
affecting the macroscopic area density. This effect is barely
visible in the structure factor.
On a side note, the growth of the dispersion amplitude

mirroring the increasing rigidity tackles another unique
feature of our model system. Since the pair potential is
purely repulsive and the system is investigated at constant
volume (and particle number), the ensemble is intrinsically
under pressure within the boundaries given by the sample
cell. Since pressure equals an energy density (that is, energy
per area in 2D), the pressure is given by the control
parameter Γ, too, such that temperature and pressure can
not be varied independently. A quantitative analysis shows
that the value of the dimensionless pressure given by Γ is of
the same order of magnitude compared to dimensionless
elastic moduli. Such pressure affects the sound velocities
given by the slope of the dispersion relation.
Now, we turn to the main results, namely, the elastic

constants derived from the dispersion relation. Figure 3
shows exemplarily the dispersion relation for Γ ¼ 64
and Γ ¼ 287 divided by q2 according to Eqs. (4) and (5).

The solid curves are fits to the data to get the elasticity
indicated by green arrows. We choose an intermediate
regime (0.8 < qa < 2.5) for the extrapolation ~q → 0 in
the shaded region where the data fits best. While in Ref. [5] a
linear fit was used to get the intercept, we here expand
j sinðqÞj2=q2 ¼ 1 − q2=3þOðq4Þ and fit quadratically.
Thirty measurement runs are performed at various temper-
atures. Because of prior work [11], the transition is expected
at 180≲ Γ≲ 240. Therefore, we focus on good temperature
resolution in that temperature range, resulting in high-quality
data each with measurement length of at least 8 × 104

seconds. The result is shown in Fig. 4. The error bars
contain contributions from the finite optical resolution and
the extrapolation of reduced dispersion relations toward
small q, as described by Eqs. (4) and (5). The statistics for
the latter is greatly improved by averaging over different
directions of ~q. In the limits of these errors, the shear
modulus below Γ ≈ 190 equals 0, regardless of the applied
external magnetic field. For increasing temperatures above,
the moduli grow linearly, reflecting the linear “stiffening” of
the interaction potential. With the amount of data, a zoom in
on the shear modulus (shown in the lower plot) clearly
reveals an abrupt rise of μ, consolidating the results of
simulation [11] and delivering the first experimental evi-
dence for a discontinuous behavior of the shear modulus at
the glass transition. This jump separates the fluid phase from
the amorphous state, as indicated by the shading from red to
blue. Averaging about the data in the transition region, we
find ΓT ¼ 195� 5. The scattering of the data is attributed to
dynamical heterogeneity present in our system [36], which
has been shown to be correlated with elastic heterogeneity
[37]. The dashed lines are fits to the moduli in the region
220 < Γ < 450. For the amorphous system, we find a slope
of μ≃ 0.31Γ and B ¼ λþ μ≃ 1.21Γ. This compares to
measurements for dipolar monodisperse crystals, where we

FIG. 2. Dispersion relations of longitudinal and transverse
excitations rescaled with the linear dependence on Γ expected
in harmonic systems (filled and empty symbols in the top and
bottom plots, respectively). The curves for different temperatures
do not collapse, which can only be explained if structural
rearrangement occurs. Because of the better optical resolution,
only trajectories of big particles are analyzed here and in the
following plots.
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longitudinal and transverse dispersion bands (filled and empty
black circles) for a solid (blue) and fluid (red) sample. The gray
shaded region is used for fitting the data, and the inset shows the
same plot with logarithmic scaling.
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find μ ¼ 0.35Γ and B ¼ 3.46Γ with a melting temperature
at Γ ¼ 60; see Ref. [5]. The latter is consistent with a
thermodynamic calculation for a dipolar crystal at T ¼ 0,
which yields a ratio of bulk to shear modulus of B=μ ¼ 10
[38]. An increased ratio B=μ compared to crystals is
proposed by nonaffine displacements affecting mainly the
shear modulus of systems with short-range interaction [39].
For the dipolar monolayer, the ratio B=μ≃ 3.5 is decreased,
dominantly due to a reduced bulk modulus.
Concerning the height of the jumps, we are not aware of

predictions of universal behavior of elasticity in thermal
amorphous systems as, e.g., the famous 16π ≈ 50.26 for
Young’s modulus in 2D melting [40], but the measured
values in glass and crystal are of the same order. For the
jump in the bulk modulus Bsolid ¼ mBfluid, a factorm ¼ 1.7
is calculated by mode coupling theory for hard spheres in
3D [41] and implicitly given in Ref. [42], where it is shown
that 3D and 2D systems behave comparably. For the dipolar
system at hand, we observe a factor m ≈ 6 for the glass and
m ≈ 4 for a crystal [43]. In comparison to hard disks, we
attribute this increased factor to the softness of the dipolar
potential. This discontinuous behavior distinguishes the
glass transition from jamming phenomena, for which the
modulus is found to grow continuously from zero. This is
encompassing granular systems [13,44], percolating gels
with attractive interactions [45,46], and furthermore systems

exhibiting friction between particles [47,48]. This might be a
ubiquitous difference between thermal and granular systems.
While a recent discussion about 2D and 3D glass claims to

find fundamental differences [49], we expect the qualitative
behavior to be robust against changes in dimensionality.
In 2D crystals, the existence of Peierls instabilities [50] or
Mermin-Wagner fluctuations [51,52] as long-wavelength
density fluctuations (of the order of system size) is well
established. The Peierls argument using relative distance
fluctuations is not based on periodicity (just a typical particle
distance is needed, unlike, e.g., in a gas), and thus we expect
such long-wavelength density fluctuations (with diverging
amplitude in the thermodynamic limit) also in 2D glass.
Using local coordinates, namely, cage-relative displacements
(called a modified dynamic Lindemann parameter for 2D
crystals [53,54]) as suggested in Refs. [36,55] would solve
most of the discrepancies found in Ref. [49]. In the present
analysis, global coordinates are used and Mermin-Wagner
fluctuations are expected to suppress the elastic response in
the limit of infinite time scales. Thus, the time interval Δt to
determine the quasiequilibrium position has to be chosen
carefully.
In Fig. 5, the finite time effects of the evaluation procedure

are shown. By changing the averaging time Δt determining
the quasiequilibrium positions, different frequency regimes
are probed. Short averaging times yield a significant increase
in elastic moduli, reflecting the expected stiffening at high
frequencies even for fluids [3]. For low frequencies (large
Δt), in contrast, the shear modulus of the fluid state decays
to zero, while in the glassy state, it decays into a plateau,
even for times up to 105 seconds. This stability of the shear
modulus is remarkable because other quantities measuring
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the system dynamics already show signs of relaxation. This
averaging time used in Fig. 4 is Δt ¼ 1.8 × 104, indicated
by the green arrow in Fig. 5 (limited by the longest
accessible time from the fluid data). Comparing with
Fig. 1, this is well after the onset of the alpha relaxation
time τα for the data sets in the vicinity of the transition. In
contrast to the shear modulus, the bulk modulus is much
more sensitive to increased dynamics, as it does not show a
well-developed plateau for low frequencies. This is attrib-
uted to the fact that transverse shear waves have much larger
amplitudes than longitudinal compression waves, such that
distortions of the wave front affect properties derived from
the latter much more strongly. This striking behavior proves
the shear modulus to be a good quantity to investigate the
glass transition. The inset finally shows a log-log plot of the
high-frequency regime for the frozen state. For about two
decades, both moduli show a power-law behavior. The
blue lines are functions with exponents of − 1

3
, describing

high-frequency bulk and shear properties, respectively. This
power-law behavior challenges theoretical descriptions.
In the last section, we turn to the analysis of the shape of

the excitations. Figure 6(a) shows the spectrum of eigen-
values DðωÞ of the displacement field covariance matrix
Cij for the system at Γ ¼ 200, a temperature slightly below
the glass transition temperature. The most principal com-
ponents (carrying the most weight) correspond to low
“frequencies” due to the mapping ω ∝ 1=

ffiffiffiffiffi
c⋆

p
. Because

Cij has the dimensions of square meters as it measures
amplitudes, the “frequencies” have the unit μm−1. Only a

valid mapping of amplitudes, wavelength, and frequencies
(implicitly using a dispersion relation) connects a length
scale given by the eigenvalues of the covariance matrix
to frequencies used in the density of states DðωÞ. An
interesting feature of DðωÞ is the double-peak structure,
centering at ω ≈ 0.8 μm−1 and ω ≈ 2.1 μm−1. We interpret
this as a reminiscence of Van Hove-type singularities as
they appear, e.g., in crystals due to the vanishing sound
velocity at the Brillouin-zone edge [35]. Naively, one could
argue that the first and second peaks represent longitudinal
and transverse modes, respectively, but since PCA is
a priori insensitive to polarizations, the connection is less
trivial. Nevertheless, Fig. 6(b) shows the density of states as
a function of temperature. The peaks shift to lower
frequencies with increasing temperature (decreasing inter-
action strength), reflecting a softening of the system as
expected. Note that the first peak grows at the expense of
the second upon approaching the fluid phase. This resem-
blance with a density of states known from a crystalline
solid also shows up in the reduced density of states
DðωÞ=ω, which is shown in the inset of Fig. 6(a).
Scaling with ω yields a constant value for the low-
frequency region up to the first peak. This is in accordance
with the Debye model DðωÞ ∝ ωd−1, where d is the
dimensionality of the investigated system. In the Debye
model, it is plane-wave excitations that make up the low-
frequency part of the spectrum. Putting issues regarding the
amplitude’s frequency mapping aside, the mode structure is
clearly resolved by the eigenvectors of the most principal

FIG. 6. (a) The spectrum of eigenvalues of the displacement field covariance matrix of big particles. By scaling with ω, the inset
reveals convincing Debye behavior. (b) showsDðωÞ for various inverse temperatures. The red arrows in (a) labeled c–f indicate positions
in the spectrum where the mode structure is shown in panels (c)–(f) for Γ ¼ 200. The corresponding “frequencies” are given above the
respective graphs. For details, see the text.
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components of the displacement field. For decreasing
wavelength, these are shown in Figs. 6(c)–6(f) with the
corresponding frequency noted above. Those frequencies are
also indicated by red arrows in Fig. 6(a). While Figs. 6(d)
and 6(e) show some kind of Lissajous pattern, for modes of a
given frequency but different phases, they start to show
incoherence for higher frequencies indicated by a random
distribution of arrows. The coherence length of the imaged
virtual motion gets notably smaller, reflecting the growing
influence of disorder. This culminates at frequencies
accounting to the first peak, where the mode structure
appears almost disordered in Fig. 6(f). Nonetheless, care
has to be taken since PCA was shown to generate a mode
pattern from mixed states at higher frequencies; the low-
frequency modes, on the other hand, are expected to be pure
states [56]. In Fig. 6(c), one can clearly verify the plane-wave
character of the excited states in the low-frequency limit.
Accordingly, the ansatz to equally distribute energies via
the equipartition theorem on plane-wave-like modes for
limðq → 0Þ [Eq. (3)] is reasonable.

IV. CONCLUSION

We have experimentally investigated the elastic proper-
ties of a colloidal glass former in great detail. By tuning the
interactions in situ, we have accessed the well-defined
displacement field in Fourier space at numerous effective
temperatures and used the equipartition theorem to calcu-
late the dispersion relations. Scaling with the interaction
parameter reveals a hidden structural change upon cooling
that is too subtle to be picked up by other functions. In the
limit of long wavelength, the dispersion relations yield the
elastic moduli of compression and shear, of which par-
ticularly the latter is of great interest for an deeper under-
standing of the glass transition. It has been demonstrated
that the shear response unambiguously separates the fluid
state from the amorphous solid. The transition itself
exhibits a discontinuous behavior, which is in agreement
with theoretical predictions and simulations and distin-
guishes it from granular matter or gelation-type scenarios.
Finite time analysis reveals a striking stability of the shear-
related measurements, which are proven to be decoupled
from relaxation phenomena like cage breaking. This makes
the shear modulus an exceptionally good quantity to
investigate the glass transition.
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